Part I: Do three of the following problems

1. Let $u(x, y)$ be a polynomial of degree n that is harmonic in \mathbb{C}. Show that $u(x, y) = \Re(f(z))$ where $f(z)$ is a polynomial of degree n.

2. Let $f(z)$ be an analytic function from the open unit disc D onto D. Let $M(r) = \max\{|f(z)| : |z| = r\}$.
 (i) Show that $M(r)$ is a strictly increasing function of r.
 (ii) Show that $\lim_{r \to 1^-} M(r) = 1$.

3. Use the calculus of residues to find the principal value of $\int_{-\infty}^{\infty} \frac{dx}{x(2x^2 - 2x + 1)}$. Here the principal value of $\int_{-\infty}^{\infty} f(x)dx$ means $\lim_{\epsilon \to 0^+} \left(\int_{-\infty}^{-\epsilon} f(x)dx + \int_{\epsilon}^{\infty} f(x)dx\right)$.

4. (i) Find a bijective conformal mapping from $\mathbb{C} - [1, \infty)$ to the open unit disc D.
 (ii) Find a conformal mapping from $\mathbb{C} - [0, 1]$ onto the open unit disc D. Can this map be bijective? Why or why not?
Part II: Do two of the following problems

1. Let \(G \subset \mathbb{C} \) be a region in \(\mathbb{C} \) and let \(I = [a, b] \) be a line segment, \(I \subset G \). Let \(f(z) \) be continuous in \(G \) and analytic in \(G - I \). Show that \(f(z) \) is analytic in \(G \).

2. Let \(f(z) \) be analytic in \(\{z : 0 < |z| < 1\} \) except for a sequence of isolated non removable singularities \(\{z_n\} \) with \(\lim_{n \to \infty} z_n = 0 \). Show that any \(w \in \mathbb{C} \) and any \(\epsilon, \delta > 0 \), there exists a \(z \neq z_n \) with \(0 < |z| < \delta \) such that \(|f(z) - w| < \epsilon \).

3. Let \(G \) be a region in \(\mathbb{C} \) that contains the closed unit disc \(\bar{D} \) and let \(f(z, t) \) be a continuous function on \(G \times [0, 1] \) that is analytic in \(z \).

 (i) Show that \(f'(z, t) \) is continuous on \(G \times [0, 1] \), where \(f'(z, t) \) denotes \(\frac{\partial}{\partial z} f(z, t) \).

 (ii) Suppose \(f(z, t) \neq 0 \) for \(z \) with \(|z| = 1 \) and any \(t \in [0, 1] \). Show that \(f(z, 1) \) has the same number of zeroes in \(D \), counting multiplicities, as \(f(z, 0) \).