PH.D. COMPREHENSIVE EXAMINATION
COMPLEX ANALYSIS SECTION

August, 2006

Part I. Do three (3) of these problems.

I.1. (a) Let \(f(z), g(z) \) be entire functions and assume that \(f(z) = g(z) \) for every \(z \in S \) where \(S \) is an uncountable subset of \(\mathbb{C} \). What can be said about \(f \) and \(g \)?

(b) Let \(\Omega \) be a region and \(f, g \) holomorphic in \(\Omega \) such that \(f(z)g(z) = 0 \) for all \(z \in \Omega \). Show that either \(f \equiv 0 \) or \(g \equiv 0 \).

I.2. Let \(n \) be a positive integer. Prove that the polynomial

\[
p(z) = \sum_{k=0}^{n} \frac{z^k}{k!} = 1 + z + \frac{z^2}{2} + \cdots + \frac{z^n}{n!}
\]

has \(n \) distinct zeros.

I.3. Assume \(f \) is entire and \(|f(z)| \to +\infty \) as \(|z| \to +\infty \). Prove that \(f \) is a polynomial.

I.4. Determine the group of all one-to-one holomorphic maps of \(\mathbb{C} \) onto \(\mathbb{C} \).
Part II. Do two (2) of these problems.

II.1. Suppose \(f : \mathbb{U} \longrightarrow \mathbb{U} \) is nonconstant, holomorphic on \(U \) and continuous on \(\mathbb{U} \) (\(U \) denotes the unit disc). Assume \(f(\partial U) \subseteq \partial U \). Prove that
(a) \(f \) has a zero in \(U \).
(b) \(f \) maps the disc \(U \) onto itself.

II.2. Give an example of a function which is holomorphic at every point of the complex plane except for a single point on the unit circle \(|z| = 1 \), and which is real-valued at every other point of the unit circle.

II.3. Suppose \(f \) is holomorphic in the half plane \(\text{Im} \ z > 1 \) and \(f(z + 1) = f(z) \).
(a) Use a Laurent expansion to prove that \(f(z) \) has an exponential representation valid for \(\text{Im} \ z > 1 \):

\[
(A) \quad f(z) = \sum_{n=-\infty}^{\infty} a_n e^{2\pi inz}.
\]

(b) Derive a special form of (A) that holds if \(|f(z)| \) remains bounded as \(\text{Im} \ z \to \infty \).