PH.D. COMPREHENSIVE EXAMINATION
COMPLEX ANALYSIS SECTION

Fall 1995

Part I. Do three (3) of these problems.

I.1. Show that if \(u(x, y) + iv(x, y) \) is an analytic function with non-vanishing derivative in a region \(R \), then, for any constants \(c_1 \) and \(c_2 \), the curves \(u(x, y) = c_1 \) and \(v(x, y) = c_2 \) are orthogonal in \(R \) (at the points of their intersection).

I.2. If \(-1 < a < 1 \), compute

\[
\int_{0}^{\infty} \frac{x^a}{1 + x^2} dx
\]

using residues.

I.3. Give a conformal (i.e., biholomorphic) map of \(\mathbb{C} \setminus [1, \infty) \) onto the open unit disc.

I.4. Suppose \(f(z) \) is holomorphic in \(\mathbb{C} \setminus \{0\} \) and satisfies

\[
|f(z)| \leq |z|^2 + \frac{1}{|z|^2} \quad \text{for} \quad z \neq 0.
\]

If \(f(z) \) is an odd function, what form must it have?

Part II. Do two (2) of these problems.

II.1. Suppose \(f(z) \) is meromorphic in all of \(\mathbb{C} \) and bounded on \(\{z : |z| > R\} \) for some \(R > 0 \). Prove that \(f(z) \) is rational.

II.2. Suppose \(f \) is analytic on a neighborhood of the closed unit disc \(\overline{D} \) and one-to-one on the unit circle \(\partial D \). Show that \(f \) is one-to-one on \(\overline{D} \).

II.3. Show that there is no one-to-one analytic function which maps \(A = \{z : 0 < |z| < 1\} \) onto \(B = \{z : 1 < |z| < 2\} \).