I.1 Let G be a finite non-Abelian group that is generated by two distinct elements of order 2. Show that G is isomorphic to the dihedral group $D_n := \langle r, s \mid s^2 = 1 = r^n, sr = r^{n-1}s \rangle$ of order $2n$ for some $n \in \mathbb{Z}_{\geq 3}$.

I.2 Let A and B be rings (with identity) and let $R = A \times B$ be their direct product. Prove:
(a) If I, J are (two-sided) ideals of A and B, respectively, then $I \times J$ is an ideal of R and $R/(I \times J) \cong (A/I) \times (B/J)$.
(b) Every ideal of R is of the form $I \times J$ for suitable ideals $I \subseteq A$ and $J \subseteq B$.

I.3 Let $V = \mathcal{F}(\mathbb{R}, \mathbb{R})$ be the \mathbb{R}-vector space of all functions $\mathbb{R} \to \mathbb{R}$, with the usual addition and multiplication by scalars. For any subset $I \subseteq \mathbb{R}$, let $f_I \in V$ denote the characteristic function of I, defined by $f_I(x) = 1$ if $x \in I$ and $f_I(x) = 0$ otherwise.
(a) Let $I_\lambda (\lambda \in \Lambda)$ be any family of subsets of \mathbb{R} such that $I_\lambda \not\subseteq \bigcup_{\mu \neq \lambda} I_\mu$ for all λ. Prove that the functions f_{I_λ} ($\lambda \in \Lambda$) are linearly independent. Conclude that $\dim_{\mathbb{R}} V = \infty$.
(b) Do the characteristic functions f_I ($I \subseteq \mathbb{R}$) generate the vector space V?

I.4 Let F be a field and let $R = F + x^2 F[x]$, the set of all polynomials in the polynomial ring $F[x]$ such that the coefficient of x is 0.
(a) Show that R is a subring of $F[x]$.
(b) Determine the group R^\times of invertible elements of R.
(c) Show that R is not a UFD.

Hint for (c): prove that x^2 and x^3 are irreducible elements of R.
Part II. Do two of these problems.

II.1 (a) Let F_n be the free group on n generators and let $[F_n,F_n]$ be the subgroup of F_n generated by group commutators of all elements of F_n. Show that $F_n/[F_n,F_n] \cong \mathbb{Z}^n$.
(b) Prove that if F_n is isomorphic to F_m, then $n = m$.

II.2 Let R be a ring (with identity) and let $S = \text{Mat}_n(R)$ be the $n \times n$ matrix ring. View R as a subring of S by identifying $r \in R$ with the “scalar” matrix $\sum_{i=1}^n re_{i,i} \in S$, where $e_{i,j} \in S$ denotes the matrix having 1 in position (i,j) and 0s elsewhere. Let M be a left S-module and put $M_i = e_{i,i}M$. Show:
(a) Each M_i is an R-submodule of M and $M = M_1 \oplus \cdots \oplus M_n$ (as R-modules).
(b) $M_i = e_{i,j}M$ for any j and $M_i \cong M_1$ as R-modules.
(c) M is irreducible as S-module if and only if M_1 is irreducible as R-module. (Recall that a module is called irreducible if it is nonzero and the only submodules are 0 and itself.)

II.3 Let F be a number field, that is, a finite extension of \mathbb{Q}. Show that there are only finitely many roots of unity in F.

2