PART I: Do three of the following problems.

1. Given an additive abelian group \(A \) and a positive integer \(m \), set \(mA = \{ ma : a \in A \} \). Now let \(A \) be a finitely generated but not finite additive abelian group. Prove that there exists a positive integer \(n \) such that \(nA \) is a nonzero free abelian group.

2. Let \(n \) be a positive integer, and let \(N \) be an \(n \times n \) complex matrix. Suppose for every \(n \times n \) complex matrix \(A \) there exists a complex \(n \times n \) matrix \(B \) such that \(AN = NB \). Prove that \(N \) is either the zero matrix or is invertible.

3. Let \(K \) be a field. Prove that the polynomial ring in two variables \(K[x, y] \) is not a principal ideal domain.

4. Let \(F \) be a subfield of \(\mathbb{C} \). Suppose that \([F : \mathbb{Q}] \) is an odd positive integer and that \(F \) is a normal extension of \(\mathbb{Q} \). Prove that \(F \) is contained in \(\mathbb{R} \).
Part II: Do two of the following problems.

1. Let G be a finite group, and let P be a Sylow p-subgroup of G. Let H be a subgroup of G, and let N be a normal subgroup of G.

 (a) Prove that $gPg^{-1} \cap H$ is a Sylow p-subgroup of H for some $g \in G$.

 (b) Prove that $P \cap N$ is a Sylow p-subgroup of N.

 (c) Prove that PN/N is a Sylow p-subgroup of G/N.

2. Let R be a ring with identity and suppose that R contains a unique maximal left ideal M.

 (a) Prove that $Ma \subseteq M$ for all $a \in R$, and conclude that M is a two-sided ideal of R.

 (b) Prove that M is equal to the set of non-invertible elements of R. (Recall that an element u of R will be invertible if and only if there exists an element v of R such that $uv = vu = 1$.)

 (c) Prove that M is also the unique maximal right ideal of R.

3. Let K be the splitting field over \mathbb{Q}, in \mathbb{C}, of $x^4 - 2$. Let $G = \text{Gal}(K/\mathbb{Q})$.

 (a) Determine the order of G, and show that G is isomorphic to the group of symmetries of a plane geometric figure.

 (b) Specify the subfields of K. For each subfield F of K, give field generators over \mathbb{Q}, and give the degree $[F : \mathbb{Q}]$.