PhD Algebra Exam
Spring 1989

Part I: Do three of these problems.

1. Let A be the real 3×3 matrix all of whose entries are 1:

$$
A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}
$$

Find

a) the eigenvalues of A

b) for each eigenvalue, a basis for the space of eigen vectors

c) the characteristic polynomial of A

d) the minimal polynomial of A

e) the Jordan normal form of A

2. Let \mathbb{Z}_m and \mathbb{Z}_n be the cyclic groups of orders m and n.

a) Prove that $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic if and only if $\text{GCD}(m, n) = 1$.

b) Prove that every subgroup of a cyclic group is cyclic.

3. Let R be an associative ring with identity such that every element is idempotent; that is, $x^2 = x$ for all elements $x \in R$.

a) Prove that R is commutative and has characteristic 2.

b) Give two examples of such rings, one finite and one infinite.

4. True or false: Justify if true, give counterexample if false.

a) An algebraic extension of a field has finite degree.

b) A solvable group is abelian.

c) A unique factorization domain is a principal ideal domain.

d) An infinite field has characteristic zero.

e) If a group is abelian then every subgroup is normal.

Part II: Do two of these problems.

5. Let $f(x)$ be an irreducible cubic polynomial over the rationals \mathbb{Q} with at least one non-real root. Let \mathbb{K} be the splitting field of $f(x)$.

a) Show $[\mathbb{K} : \mathbb{Q}] = 6$

b) Show that the Galois group $G(\mathbb{K}/\mathbb{Q})$ is isomorphic to the symmetric group S_3.

c) Show that there exist irreducible cubics over \mathbb{Q} whose Galois groups are not isomorphic to S_3, and say what the group must be.

6. Let A be an invertible matrix over a finite field \mathbb{F}.

a) Show that there is an integer k such that $A^k = I$ (identity).

b) Suppose the characteristic of \mathbb{F} is p, and let $a \neq 0$ be an element of \mathbb{F}. Find a value of k which works for the matrix

$$
A = \begin{bmatrix}
1 & a \\
0 & 1
\end{bmatrix}
$$
c) Find a value of k which works for the matrix

$$
A = \begin{bmatrix}
1 & 0 \\
0 & a
\end{bmatrix}
$$

7. Let p and q be primes, not necessarily distinct. Prove that any group of order p^2q is solvable; consider separately the cases $p = q$ and $p \neq q$. (You may assume Sylow theory and the class equation.)