Part I. Do three of these problems:

I.1 Consider the ring \(\mathbb{Z}[x] \). Give an example of a non-zero prime ideal in \(\mathbb{Z}[x] \) that is not maximal. Now let \(R \) be an arbitrary principal ideal domain. Prove that every non-zero prime ideal in \(R \) is also maximal.

I.2 Let \(p \) be prime and let \(A \) be a \((p - 1) \times (p - 1)\) matrix with rational entries such that \(A \neq I_{p-1} \), the \((p - 1) \times (p - 1)\) identity matrix, but

\[
A^p = I_{p-1}.
\]

Find the rational canonical form of \(A \) over \(\mathbb{Q} \) and the Jordan canonical form of \(A \) over \(\mathbb{C} \).

I.3 Let \(R \) be an integral domain. Prove that the polynomial ring \(R[x] \) is also an integral domain. Prove that the units of \(R[x] \) are precisely the units of \(R \). Give an example of a commutative ring \(R \) (with \(1 \neq 0 \)) and a pair of polynomials \(p(x), q(x) \in R[x] \) of positive degrees for which

\[
p(x) \cdot q(x) = 1.
\]

I.4 Find all isomorphism classes of groups \(G \) of order 12 which satisfy this property: the Sylow 3-subgroup \(H \) of \(G \) is normal in \(G \).
Part II. Do two of these problems:

II.1 Let R be a principal ideal domain. Prove directly (i.e., without invoking Hilbert’s Basis Theorem) that every ideal in the polynomial ring $R[x]$ is finitely generated.

Hint: Let I be a non-zero ideal of $R[x]$. Prove that the union

$$L = \{0\} \cup \{ \text{leading coefficients of non-zero polynomials in } I \}$$

is an ideal of R. Since R is a principal ideal domain, $L = (r)$ for some $r \in R$ and there is a polynomial $f(x) \in I$ whose leading coefficient is r. Next, consider polynomials in I of degrees $< \deg f(x)$.

II.2 Let $K \supset F$ be a finite separable field extension. Let us denote by $\text{Emb}(K/F)$ the set of all ring homomorphisms

$$\psi : K \to \overline{F},$$

such that $\psi(a) = a$ for every $a \in F$, where \overline{F} is a fixed algebraic closure of F. Prove that the number of elements in $\text{Emb}(K/F)$ is precisely $[K : F]$.

II.3 Let G be a group having a series of subgroups $1 = G_0 \leq G_1 \leq \cdots \leq G_n = G$ such that all G_i are normal in G and all factors G_i/G_{i-1} are cyclic. (Such a group G is called supersolvable.) Show that G contains a nilpotent normal subgroup of finite index. Give an example of a non-nilpotent supersolvable group.