2015 | 2016 | 2017 | 2018 | 2019
The seminar is jointly sponsored by Temple and Penn. The organizers are Brian Rider and Atilla Yilmaz (Temple), and Jian Ding and Robin Pemantle (Penn).
Talks are Tuesdays 3:00 - 4:00 pm and are held either in Wachman Hall (Temple) or David Rittenhouse Lab (Penn) as indicated below.
For a chronological listing of the talks, click the year above.
Xinyi Li, University of Chicago
In this talk, I will talk about loop-erased random walk (LERW) in three dimensions. I will first give an asymptotic estimate on the probability that 3D LERW passes a given point (commonly referred to as the one-point function). I will then talk about how to apply this estimate to show that 3D LERW as a curve converges to its scaling limit in natural parametrization. If time permits, I will also talk about the asymptotics of non-intersection probabilities of 3D LERW with simple random walk. This is a joint work with Daisuke Shiraishi (Kyoto).
Alexander Moll, Northeastern University
The Born Rule (1926) formalized in von Neumann's spectral theorem (1932) gives a precise definition of the random outcomes of quantum measurements as random variables from the spectral theory of non-random matrices. In [M. 2017], the Born rule provided a way to derive limit shapes and global fractional Gaussian field fluctuations for a large class of point processes from the first principles of geometric quantization and semi-classical analysis of coherent states. Rather than take a point process as a starting point, these point process are realized as auxiliary objects in an analysis that starts instead from a classical Hamiltonian system with possibly infinitely-many degrees of freedom that is not necessarily Liouville integrable. In this talk, we present these results with a focus on the case of one degree of freedom, where the core ideas in the arguments are faithfully represented.