Hearing pseudoconvexity in Lipschitz domains with holes via $\bar{\partial}$

by Siqi Fu
Rutgers University

Abstract: In this talk, I will explain the proof of the following result due to C. Laurent-Thiebault, M.-C. Shaw and myself: Let $\Omega = \check{\Omega} \setminus \check{D}$ where $\check{\Omega}$ is a bounded domain with connected complement in \mathbb{C}^n and D is relatively compact open subset of $\check{\Omega}$ with connected complement in $\check{\Omega}$. If the boundaries of $\check{\Omega}$ and D are Lipschitz and C^2-smooth respectively, then both $\check{\Omega}$ and D are pseudoconvex if and only if 0 is not in the spectrum of the $\bar{\partial}$-Neumann Laplacian on $(0,q)$-forms for $1 \leq q \leq n - 2$ when $n \geq 3$; or 0 is not a limit point for the spectrum of the $\bar{\partial}$-Neumann Laplacian on $(0,1)$-forms when $n = 2$.