ABSTRACT: Let $N > 1$ be an integer, and let $1 < a_1 < \ldots < a_N$ be relatively prime integers. Frobenius number of this N-tuple is defined to be the largest positive integer that cannot be expressed as a linear combination of a_1, \ldots, a_N with non-negative integer coefficients. The condition that a_1, \ldots, a_N are relatively prime implies that such a number exists. The general problem of determining the Frobenius number given N and a_1, \ldots, a_N is known to be NP-hard, but there has been a number of different bounds on the Frobenius number produced by various authors. We use techniques from the geometry of numbers to produce a new bound, relating Frobenius number to the covering radius of the null-lattice of the linear form with coefficients a_1, \ldots, a_N. In case when this lattice has equal successive minima, our bound is better than the previously known ones. This is joint work with Sinai Robins.