Rellich type identities and their role in the treatment of Elliptic Boundary Value Problems in Lipschitz domains

by Jeongsu Kyeong
Temple University

Abstract: Among other things, integral identities of Rellich type allow one to deduce the $L^2(\partial \Omega)$ equivalence of the tangential derivative and the normal derivative of a harmonic function with a square integrable non-tangential maximal function of its gradient in a given Lipschitz domain $\Omega \subset \mathbb{R}^n$. In this survey talk, I will establish the integral identities in \mathbb{R}^n and I will illustrate the role that the aforementioned equivalence plays in establishing invertibility properties of singular integral operators of layer potential type associated with the Laplacian in Lipschitz domains in \mathbb{R}^2, through an interplay between PDE, Harmonic Analysis, and Complex Analysis methods.