2013 | 2014 | 2015 | 2016 | 2017
Current contact: Gerardo Mendoza
The seminar takes place Mondays 2:40 - 3:30 pm in Wachman 617. Click on title for abstract.
Scott Armstrong, NYU
I will describe recent developments in the quantitative homogenization of linear elliptic equations in divergence form, emphasizing some ideas arising from the calculus of variations and the role played by a new elliptic regularity theory for equations with random coefficients.
Irina Mitrea
In this talk I will discuss well-posdness results for the Dirichlet problem for second-order, homogeneous, elliptic systems, with constant complex coefficients, in the upper half space, with boundary data from Lebesgue spaces, variable exponent Lebesgue spaces, Lorentz spaces, Zygmund spaces, as well as their weighted versions. A key tool in this analysis is establishing boundedness of the Hardy-Littlewood maximal operator on appropriate Köthe function spaces. This is joint work with Dorina Mitrea, Marius Mitrea and Jose Maria Martell.
Guy David, Courant Institute, New York University
Since the work of Cheeger, many non-smooth metric measure spaces are now known to support a differentiable structure for Lipschitz functions. The talk will discuss this structure on metric measure spaces with quantitative topological control: specifically, spaces whose blowups are topological planes. We show that any differentiable structure on such a space is at most 2-dimensional, and furthermore that if it is 2-dimensional the space is 2-rectifiable. This is partial progress on a question of Kleiner and Schioppa, and is joint work with Bruce Kleiner.
Federico Tournier, University of La Plata and IAM, Argentina
Charles Epstein, University of Pennsylvania
Yannick Sire, John Hopkins
Tadele Mengesha, University of Tennessee, Knoxville